

Trouble Shooting

Presenter : Matthew Jeon

CSM®

Woongjin Chemical Co. Ltd Filter Division

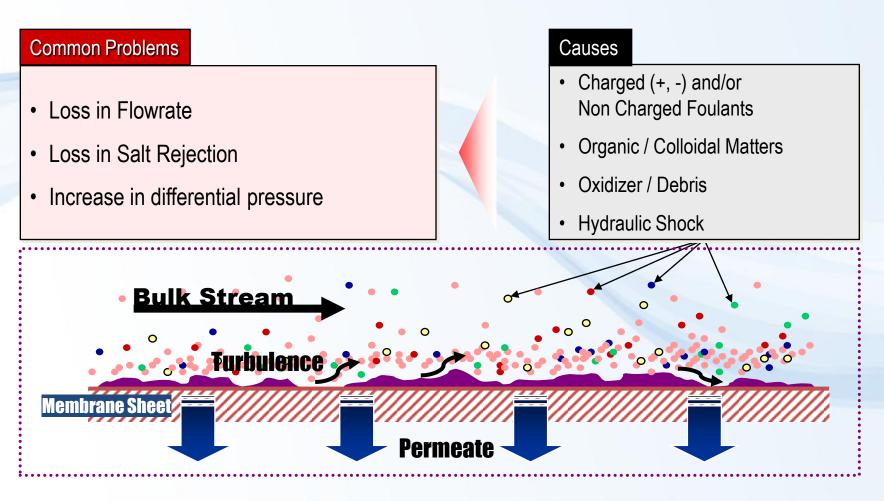
CONTENTS

I. Field Inspection

II. Membrane Analysis

III. Trouble shooting guide

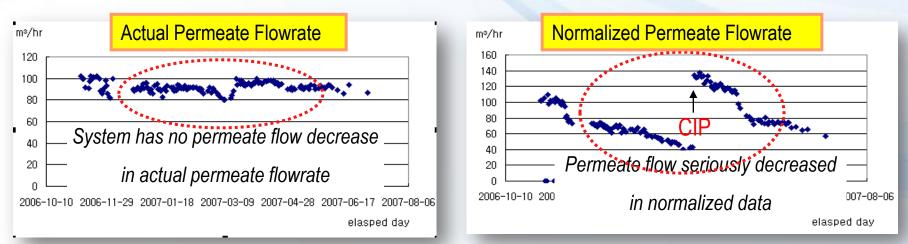
IV. CIP (Clean In Place)



I. Field Inspection

Ι.

Loss of salt rejection, loss of permeate flow and pressure drop increase are the most common problems encountered in reverse osmosis.


Data Normalization

Field Inspection

 Comparing real operating data to reference data (initial data) to predict membrane fouling and chemical damages, mechanical failure

Normalization parameter

- Salt rejection ; Can be affected by pressure, temperature, recovery, etc.
- Flow rate ; Can be affected by pressure, temperature, pH, etc
- Differential pressure ; Can be affected by pressure and flow rate

This graphs are permeate flowrate trend before and after normalization

Ι.

If the normalized performance show severe deterioration, the following should be checked.

- Calibration of all meters, sensors and pressure gauges
- Stabilization of system at least for 24 to 72 hours in continuous operation
- Consideration of permeate pressure
- Significant pressure loss from the feed to the concentrate
- Check of the start-up and shut-down procedure for hydraulic shocks, permeate backpressure and back-flow of permeate
- Check of CIP procedure and chemical
- Check of CIP frequency
- Water Analysis : Carbon dioxide can increase the permeate conductivity
- Check of the potential oxidation problem by chlorine and oxidizing chemicals
- Check of replacement rate of prefilters
- Check of the SDI
- Check of the scaling calculations and dosage rates of chemicals.

Check of Biogrowth and mold in tanks and pipes

Check of the vessels leakage which suck air during shut down and lead to hydraulic shock

Field Inspection

Inspection of feed side by opening pressure vessel : any fouling, smell, properly shimmed Inspection of concentrate side by opening pressure vessel : scaling

Field Inspection

Check of couplers for torn, damaged or misplaced O-rings by removal the element from the pressure vessel

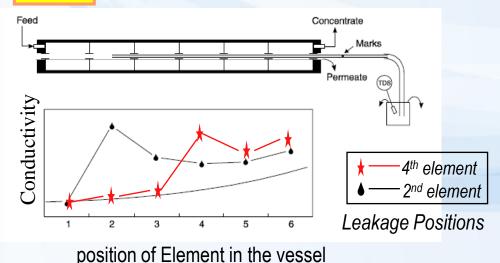
Inspection of element for fouling, scaling and mechanical damage

Field Inspection

Profiling

Ι.

If a system exhibits high solute passage, all individual vessel's TDS or conductivity or other relevant quality values must be checked.


Probing

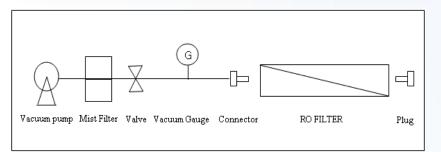
If one pressure vessel shows a significantly higher permeate concentration than the other vessels of the same stage, conductivity of every elements need to be checked

Profiling

Probing

II. Membrane Analysis

Visual inspection provides some information on problems like fouling and scale.



Check Point

- Potential fouling or scaling problem
- Discolorations of the outer wrapping and the fiberglass
- > Any deposits or foreign matter
- Telescoping, channeling and fiberglass damage
- Mechanical damage of permeate water tube

Vacuum Test is performed to detect any mechanical leaks by checking the vacuum decay rate. (Based on San Diego Protocol or ASTM)

Check Point

- Leaks by puncture or scratches
- Delamination and physical damage by permeate back pressure or water hammer
- Membrane integrity
- * Test acceptance criteria
 - vacuum decay rate < 100 mbar/min.

Vacuum test equipment

Standard element performance test is used to confirm the performance comparison with initial value under standard test conditions

Table 1. Performance Data on Returned Membrane								
	Catalogu	Catalogue Value		Re-tested value				
Bar code	Flowrate. (GPD)	Rejection (%)	Flowrate (GPD)	Rejection (%)	DP. (kgf/cm*)	VDR (mbar/min)	Weight (kg)	Remarks
BJFAA0110032 11,000 99.5			16,700	98.3	0.5	20	15.8	1st stage A42-1
Initial differentia	Initial differential pressure is 0.3kgf/cm ²							
∦ Test cond	× Test conditions							
Feed Cor	Feed Concentration : 2,000 ppm NaCl							
Feed Pres	Feed Pressure : 225 pai							
Temperature : 29°C								
Recovery	:	15%						
pH	: (6.5						

Check Point

- Comparison of salt rejection, permeate flowrate and differential pressure increase with initial data
- Performance comparison before and after any cleaning test

Flat sheet test is performed to check the performance by parts

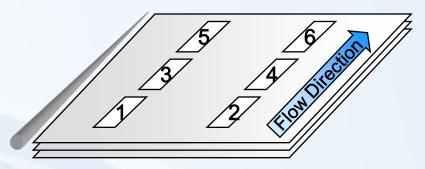
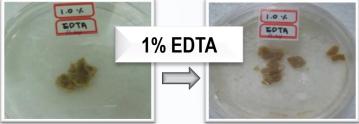


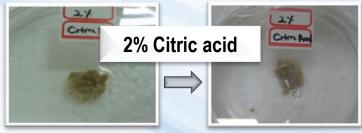
Figure. Membrane Sampling Points & Examples

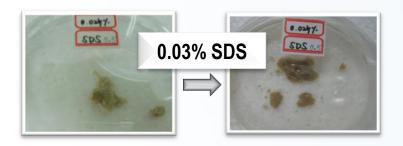
Table 2. Flat Sheet Performance Test

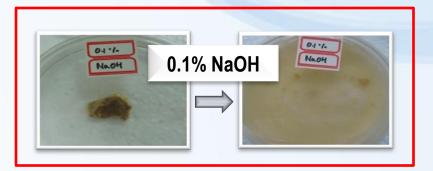
Check Point

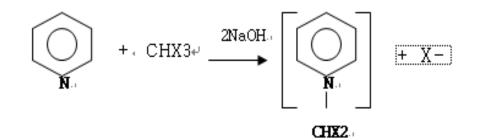
- Comparison of salt rejection and permeate by location
- Performance comparison before and after any cleaning test


Sample	Flux (GFD)	Rejection (%)	Remarks	
1	50.2	93.21	F. d. a.d.	
2	46.2	94.92	Feed part	
3	test error		1414 D	
4	48.5	95.68	Middle Part	
5	47.2	97.33	Countrate Part	
б	46.6	97.83	Concentrate Part	
average	47.7	95.79		


0.2%


HCI


To confirm whether bio-fouling or scaling is the cause of decline in membrane performance, either acid or caustic solution soaking methods are used.



Fujiwara test method is to confirm qualitatively whether the PA polymer structure was attacked by oxidative halogen chemicals like chlorine, bromine and iodine or not

Only oxidized RO membrane turns pink by this test.

1 cm² membrane is placed in the bottom of tube

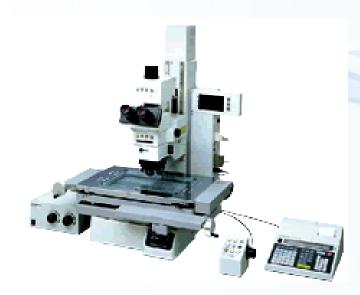
- ② Several milliliters of 5N NaOH are added
- ③ Followed by 0.5mL of Pyridine
- ④ Test tube is placed in a beaker of boiling water

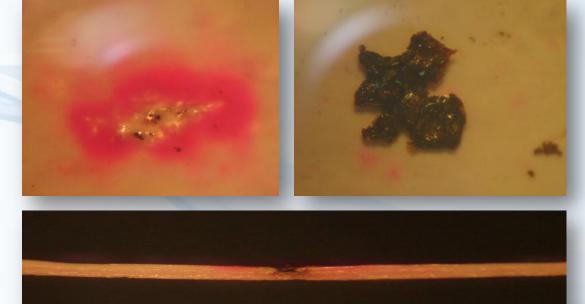
Comparison with normal membrane

To determine the causes and the location of a salt passage, the element is operated with a pressurized dye solution prior to an autopsy. A pink permeate would indicate membrane damage.

Check Point

- Oxidation and damage of membrane
- Permeate Back-Pressure

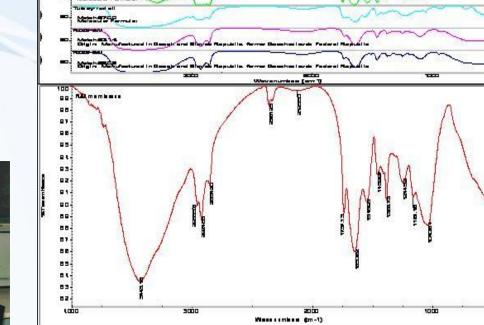

Rhodamine B is used for dye test.


-> Rhodamine B's M.W. is 400 ~500 and can not pass Non-Damaged Membrane.

Dye solution passed through the damaged part of concentrate side.

To verify the causes and location of decline in performance, microscope inspection is performed.

Check Point

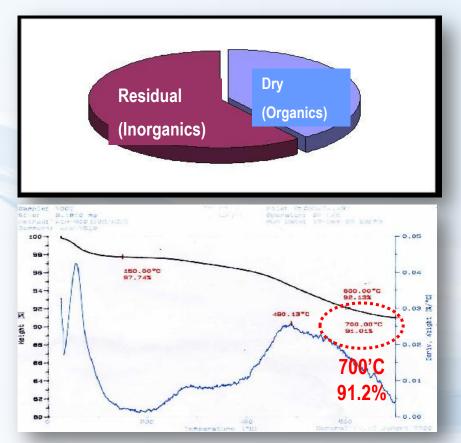

- Fouling Particles
- Membrane Damage Part

Above pictures show damaged membrane by some welding particles

Specific organic / inorganic matters are confirmed by FT-IR (Fourier Transform Infrared Spectroscopy)

Check Point

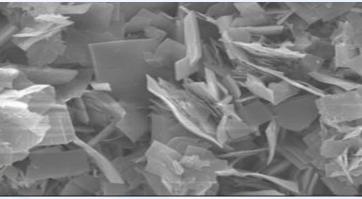
- Infrared radiation wave indicate property of organic matter functional group
- Through the comparison of spectrum of matter, possible to confirm pollutants



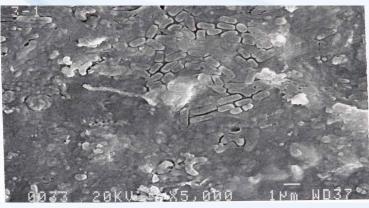
The content rate of organic/inorganic matter is verified.

Residual rate indicates inorganic ratio of foulants.

- ① Weight calibration of crucible
- ② Weight calibration of crucible and sample
- ③ Heating of crucible and sample
- ④ Weight calibration of crucible and ash
- ⑤ Calculation of organic matter : [2-4]

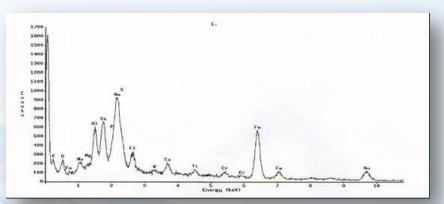

This figure shows 90% of most foulants are resided and these are inorganic matters.

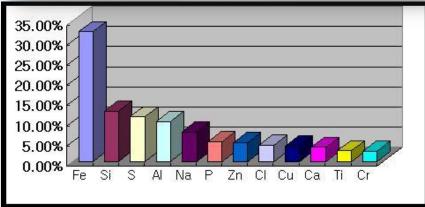
The sample is examined under a microscope at various magnifications to verify some foulants.


Check Point

- The structure
- Crystalization
- Size and kind of the membrane foulants

SEM image of CaCO3 Scale


SEM image of micro-organism


EDS gives a semi-quantitative composition of chemical elements of the membrane and the foulants.

Check Point

- Proportion between energy intensity and content of matters (Semi-quantitative)
- Useful to choose CIP method

Fe is main fouling component, this value indicate semiquantitative of fouling matters.

III. Trouble Shooting Guide

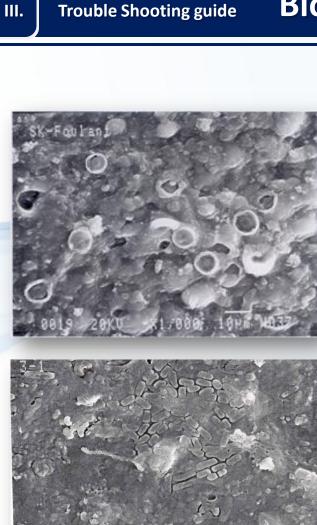
Metal Oxide Fouling

- 25 woongjin chemical

Symptoms

- ✓ Normalized DP Increases Especially in 1st Stage
- Normalized Permeate Flow Decreases
- Normalized Salt Rejection Decreases

Corrective Methods


- Clean the membrane elements
- Adjust, correct and /or modify the pretreatment
- Retrofit piping or system components with appropriate materials.

- Analyze feedwater for iron and aluminium
- Check system components for evidence of corrosion

Biological Fouling

- 26 woongjin chemical

Symptoms

- Normalized DP Increases at Any Stage
- Normalized Permeate Flow, Salt Rejection decrease

Corrective Methods

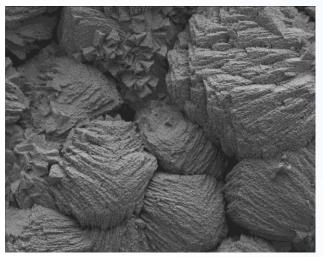
- Clean and sanitize the entire system
- ✓ Soak and rinse in High pH
- Installation of fouling resistance elements

- ✓ Bacteria Count : TBC, DBC
- SEM Analysis

Colloidal Fouling

- 27 woongjin chemical

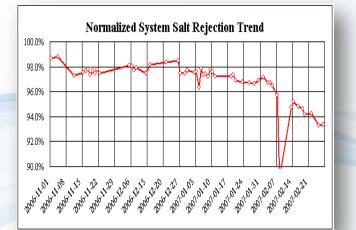
Symptoms


- ✓ Normalized DP Increases Especially in 1st Stage.
- ✓ Normalized Permeate Flow, Salt Rejection decreases

Corrective Methods

- Clean the elements depending on foulants
- Adjust, correct and /or modify the pretreatment

- Check the feed water SDI
- Analyze accumulations on prefilter cartridges
- Inspect and analyze deposits on elements


Symptoms

- ✓ Normalized DP Increases Especially in last Stage.
- ✓ Normalized Permeate Flow, Salt Rejection decreases

Corrective Methods

- Pretreatment : Softening, Lime softening, Acid injection
- Optimize cleaning depending on present scaling salts
- Anti-scalant Injection : SHMP, Organo phosphate etc

- Check feedwater analysis for the scaling potential at system recovery
- Inspect concentrate side of system : weigh and touch the tail-element

Symptoms

- Normalized Salt Rejection Decrease
- Normalized Permeate Flow Increase
- ✓ Normalized DP is Stable

Corrective Methods

- Monitoring Free chlorine, ORP value
- Injecting SBS
- Chloramine disinfection instead of chlorine

- ✓ Dye Test
- Fujiwara Test
- ESCA Analysis

RO Installation Mistakes

- 30 woongjin chemical

Conductivity increase of several vessel by O-ring leak.


RO2231 lst Stage Skidl	RO2231 1st Stage Skid2	RO2231 2nd Stage	
A4 15.5 A5 15.0 A6 16.2 A7 15.2	A8 A9 A10 A11 15.5 15.4 15.5 13.7	A15 A16 A17 A19 A19 30.8 44.9 28.3 26.7 29.1	
B1 B2 B3 B4 B5 B6 B7 15.7 15.4 15.1 15.4 15.8 15.7 16.0	B8 B9 B10 B11 B12 B13 B14 16.1 15.3 15.3 20.4 18.3 14.6 15.4	B15 B16 27.3 B17 B19 B20 B21 28.1 25.8 B19 28.2 33.3 B21 28.5	
C1 C2 C3 C4 C5 C6 C7 15.3 15.8 15.3 15.5 15.5 15.6 14.8	C2 C3 C3 C12 C12 C12 C12 C12 C12 C13 C14 L53 L54 <thl54< th=""> <thl54< th=""> <thl54< th=""></thl54<></thl54<></thl54<>	C15 C16 C17 C18 C19 C20 C20 C21 27.3 34.2 28.8 27.2 27.0 27.4 27.2	
D1 D2 D3 D4 D5 D6 D7 15.5 15.1 14.1 15.3 15.5 15.1 14.0	D8 D9 D10 D11 D12 D13 D14 15.6 14.8 14.0 15.3 15.3 15.3 14.6	D15 D16 D17 D19 D19 D20 D21 29.9 27.5 28.6 41.9 37.3 43.0 32.0	
E1 13.5 E2 15.1 E3 14.1 E4 15.3 E5 15.5 E6 15.1 E7 14.0	E8 E9 E10 E11 E12 E12 E13 E14 14.1 14.9 15.2 14.9 14.4 15.0 14.3	E15 28.7 E16 38.4 30.9 E19 32.3 E19 33.0 E19 31.7 E20 31.7 E21 34.5	
F1 F2 F3 F4 F5 F6 F7 T3.0 15.7 14.4 14.5 16.3 688.0 15.3 13.0	F8 F9 F10 F11 F12 F12 F14 13.4 15.2 16.0 14.3 15.0 30.5 15.0	F15 F16 F17 F18 F19 F20 F21 29.9 28.4 26.8 28.7 28.0 26.7 7.3	
lst feed water conductivity ; عمر cm	lst concentrate water conductivity ;886 <i>µ</i> z/om	2nd concentrate water conductivity ; 31.2 μ s/cm	
lst Stage Permeate Conductivity ; 53.8 øs/o	Common Permeate Conductivity ; 49.18,55/c=	2nd Stage Permeate Conductivity ; 31.2,cs/cm	

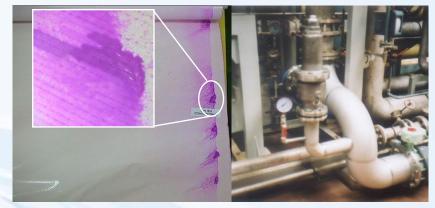
Figure. Profiling for each vessel

Cause broken o-ring

Mechanical Damage by Welding Debris

Symptoms

✓ Normalized Salt Rejection Decrease


Corrective Methods

Enough system flushing before installation

Verification Method

Optical Microscope

Permeate Back Pressure

Symptoms

Normalized Salt Rejection Decrease

Corrective Methods

- Check valve in the permeate pipe inspection
- Installation Pressure Release Valve In Permeate Line

Verification Method

Dye Test / Probing

Symptoms		Causes		
	First Stage	Deposition of organic/colloidal matter Initial biofouling / Metal Oxide Fouling		
Low Permeate Flow	Last stage	Scaling		
		Aged Preservation Solution While Stocked		
	Others	Compaction and Intrusion		
		Incomplete Wetting		
	overall	Membrane Oxidation		
Ligh Salt passage	Overall	Membrane Surface Abrasion		
High Salt passage	on optical	O-rings leakage / Telescoping		
	specified	Permeate Backpressure		
		By pass in Cartridge Filter		
		Pretreatment Media Filter Breakthrough		
High differential Pressure		Pump Impeller Deterioration /Precipitated Antiscalants		
		Brine Seal Issues		
		Biological Fouling / Scaling		

IV. CIP (Clean In Place)

CIP is, spelled 'Clean In Place', cleaning membranes in the RO vessels with equipped , not change an arrangement.

Elements should be cleaned immediately when one of the following symptoms is detected.

- ✓ Normalized water flow has decreased by 10-15% from start-up conditions.
- ✓ Delta P, or pressure drop over a stage or the system, has increased by 10-15%.
- ✓ Salt rejection has decreased (ie permeate TDS has increased) significantly over time.

Even if the above symptoms don't show, it is good to do CIP every 1-2 times per year for preventing some problems.

The main cause of inorganic scale is the concentration increase due to high recovery on RO operation.

Scale	Scale with Ca & Mg	CaSO4	SiO ₂	Fe & Al	Remark
Cause	The concentration increase due to high recovery			Corrosion of pipe	
Location	Tail vessel & elements			Overall	
Cleaning chemical	Strong Acid	Chelate	None	Weak Acid	
рН	2.0~	10.5~12.0	-	3.5	
Temp.	30 ~35 °C	30 ~35 °C	-	25 °C	

✓ In case of SiO₂, there are not effective chemicals particularly. Decreasing recovery & pretreatment for SiO₂ are important.

✓ In case of Fe, it is necessary to remove Fe in pretreatment because oxidizing would be stronger if the oxidizer meet Fe. The main cause of organic fouling is the concentration increase of fouling on membrane surface on RO operation.

Fouling	Organic compound	Bio-Film	Silt & colloid	Remark		
Cause	The concentrati					
Location	Le	Lead vessel & elements				
Cleaning chemical	Surfactant	Alkali+Surfactant	Chelate			
pН	10.5~12.0	10.5~12.0	10.5~12.0			
Temp.	30 ~45 °C	30 ~45 °C	30 ~45 °C			

 Bio-film occurs due to microbial synecology. This can be suppressed by injecting a biocide prior to RO system. However, oxidizing biocide for PA should be prohibited or neutralized before RO feed stream. CIP procedure is determined by feedwater component, trouble symptom and field condition. The engineer's experience is the most important factor. The following is a common procedure of CIP

Prepare the cleaning solution per the instructions

Temp. : up to 35°C (upper 35 °C, change in PA properties is concerned)
pH : Acid 1.5~2.5, Alkali 11~12

Circulation overall system - 10~60 min.

Circulation 1st, 2nd, 3rd bank : each 10~60 min.

Soaking: 4~15 hours (max. 3 days)

Re-circulation 1st, 2nd, 3rd bank : each 10~60 min.

Low pressure flushing : each 10~60 min.

High pressure flushing : until obtain a target permeate quality

✓ Circulation - Feed pressure : 1.4~4.1 bar, Feed flow each vessel(8") : 30-40gpm

✓ The size of CIP Tank = all pipes volume(feed+return) + all vessels volume

WOONGJIN CHEMICAL CO.,LTD www.csmfilter.com